Благодаря технологиям мультиплексирования одна и та же линия связи может передавать, например, несколько телефонных разговоров одновременно.
В предыдущих уроках мы рассмотрели такое типичное для компьютерных сетей оборудование, как мосты, коммутаторы и маршрутизаторы. Однако ввиду все более тесной интеграции компьютерных и телефонных сетей (сетей связи вообще) для администраторов и даже пользователей знание общих принципов организации телефонных сетей становится все более обязательным, в особенности если они работают с глобальными сетями. Поэтому в данном уроке мы и решили рассмотреть такую технологию (точнее, технологии), как мультиплексирование.
Прокладка и эксплуатация низкоскоростной магистральной линии между двумя АТС обходится почти во столько же, во сколько и высокоскоростной линии, так как основные затраты приходятся отнюдь не на покупку медного или оптического кабеля, а, вообще говоря, на рытье траншеи для укладки кабеля. Для передачи нескольких телефонных разговоров по одной физической линии телефонные компании и разработали технологии уплотнения, или мультиплексирования.
МУЛЬТИПЛЕКСИРОВАНИЕ В ДВУХ СЛОВАХ
Принцип действия мультиплексора прост: поступающие по нескольким входящим низкоскоростным линиям сигналы передаются в отведенном для каждого из них частотном диапазоне или интервале времени по высокоскоростной исходящей линии. На противоположном конце высокоскоростной линии эти сигналы вычленяются, или демультиплексируются.
В соответствии со способом уплотнения технологии мультиплексирования можно разделить на две основные категории: мультиплексирование с разделением по частоте (Frequency Division Multiplexing, FDM) и мультиплексирование с разделением по времени (Time Division Multiplexing, TDM). При частотном мультиплексировании частотный спектр делится на логические каналы, причем каждый пользователь получает этот канал в свое распоряжение на время разговора. При временном мультиплексировании пользователям периодически выделяется вся полоса, но только на краткий период времени.
ЧАСТОТНОЕ МУЛЬТИПЛЕКСИРОВАНИЕ
Как известно, человеческая речь может быть адекватно передана частотами в диапазоне от 300 до 3400 Гц, т. е. необходимый частотный интервал составляет 3100 Гц. Однако при мультиплексировании нескольких голосовых каналов каждому из них выделяется диапазон в 4000 Гц, чтобы они не перекрывались. Частота каждого канала увеличивается каждая на свою величину, кратную 4 кГц, затем каналы комбинируются. В результате каналы разносятся по всему спектру частот данной линии. Каналы отделены друг от друга так называемыми защитными интервалами (см. Рисунок 1).
Рисунок 1.
При частотном мультиплексировании весь частотный диапазон разбивается
на несколько каналов. Чтобы каналы не перекрывались, они отделены друг
от друга защитными интервалами.
Схемы мультиплексирования FDM в достаточной мере стандартизованы. Наибольшее распространение получил стандарт, согласно которому двенадцать голосовых каналов шириной 4000 Гц мультиплексируются в диапазоне частот от 60 до 108 кГц. Такой блок называется группой. Диапазон с 12 до 60 кГц используется иногда для другой группы.
Разновидностью технологии частотного мультиплексирования, используемой в случае оптических линий связи, является мультиплексирование по длине волны (Wavelength Division Multiplexing, WDM). Физически мультиплексирование осуществляется следующим образом: несколько волокон подводится к призме (или чаще дифракционной решетке), световые пучки пропускаются через призму и попадают в общее волокно. На противоположном конце пучки разделяются с помощью другой призмы. Если каждый подводимый пучок ограничен своим частотным диапазоном, то они не будут перекрываться. Оптические системы полностью пассивны и, как результат, более надежны.
ИМПУЛЬСНО-КОДОВАЯ МОДУЛЯЦИЯ
Современный мир становится все более компьютеризованным и, как следствие, цифровым; разумеется, эта тенденция не обошла стороной и телефонные сети. Цифровые системы получают все более широкое распространение, и в итоге частотное мультиплексирование уступает свое место временному мультиплексированию. Однако, прежде чем человеческую речь, по природе своей аналоговую, можно будет передавать по цифровой сети, ее надо преобразовать в дискретную форму. Это достигается с помощью импульсно-кодовой модуляции (Pulse-Code Modulation). Поэтому в современных цифровых телефонных сетях связи временное мультиплексирование тесно связано с импульсно-кодовой модуляцией.
Согласно теореме Котельникова, частота дискретизации должна вдвое превышать максимальную частоту спектра частот аналогового сигнала для его корректного воспроизведения, таким образом, измерения амплитуды должны производиться 8000 раз в секунду в случае человеческой речи. Значение амплитуды приближается 8-разрядным двоичным числом, поэтому скорость передачи должна составлять 64 кбит/с. Как следствие, в цифровых сетях информационный канал на 64 кбит/с - базовый для исчисления скорости всех более емких каналов связи.
ВРЕМЕННОЕ МУЛЬТИПЛЕКСИРОВАНИЕ
При мультиплексировании с разделением по времени каждое устройство или входящий канал получают в свое распоряжение всю пропускную способность линии, но только на строго определенный промежуток времени каждые 125 мкс (см. Рисунок 2). Последнее значение соответствует циклу дискретизации, так как при ИКМ каждую 1/8000 долю секунды необходимо производить измерение амплитуды аналогового сигнала. Время передачи восьмиразрядного значения мгновенной амплитуды называется квантом времени (time slot) и равно длительности передачи восьми импульсов (один для каждого бита). Последовательность квантов времени, следующих с вышеуказанным интервалом, образует временной канал. Совокупность каналов за один цикл дискретизации составляет кадр.
Рисунок 2.
При временном мультиплексировании вся пропускная способность исходящей
линии предоставляется на фиксированный промежуток времени входящей линии
меньшей емкости.
В Европе, как и в остальном мире, за исключением США и Японии, стандартной системой является ИКМ-32/30 (или E-1) с 32 временными каналами по 64 кбит/с, в которой 30 каналов используются в качестве информационных для передачи голоса, данных и т. д., а два - в качестве служебных, причем один из служебных каналов предназначен для сигнализации (служебных сигналов установления связи), другой - для синхронизации. Как нетрудно подсчитать, общая емкость системы составляет 2,048 Мбит/с.
Система E-1 образует так называемую первичную группу. Вторичную группу E-2 образуют 4 канала E-1 общей емкостью 8,448 Мбит/с, третичную систему E-3 - четыре канала E-2 (или шестнадцать каналов E-1) общей емкостью 34,368 Мбит/с, а четверичную группу - четыре канала E-3 общей емкостью 139,264 Мбит/с. Эти системы образуют европейскую плезиохронную цифровую иерархию.
Принцип последовательного мультиплексирования каналов проиллюстрирован на Рисунке 3. Четыре канала E-1 мультиплексируются в один канал E-2, причем на этом и последующих уровнях мультиплексирование осуществляется побитно, а не побайтно, как это имело место в случае мультиплексирования 30 голосовых каналов в один канал E-1. Суммарная емкость четырех каналов E-1 составляет 8,192 Мбит/с, в то время как полная емкость E-2 равна в действительности 8,448 Мбит/с. Избыточные биты используются для обрамления и восстановления синхронизации. Затем четыре канала E-2 мультиплексируются в один канал E-3 и т. д.
Рисунок 3.
Как малые притоки сливаются в одну большую реку, так и низкоскоростные
линии объединяются в высокоскоростные с помощью иеархии мультиплексоров.
Принятый в Северной Америке и Японии, стандарт определяет канал T-1 (формат кадра DS1). Канал T-1 состоит из 24 мультиплексированных голосовых каналов, причем изначально предполагалось, что амплитуда аналогового сигнала будет выражаться 7-разрядным двоичным числом, а один бит использоваться для целей управления (сигнализации). Кроме того, помимо 192 бит каждый кадр имеет еще один бит для синхронизации. Таким образом, общая емкость канала T-1 составляет 1,544 Мбит/с. Однако в конце концов все 8 бит были отведены под данные, а сигнализация стала осуществляться одним из следующих двух способов. При сигнализации по общему каналу 193-й бит в каждом нечетном кадре служит для целей синхронизации, а в каждом четном - для сигнализации. Суть другого метода заключается в том, что каждый канал имеет свой собственный подканал для передачи сигнальной информации (один бит в каждом шестом кадре).
СИНХРОННАЯ ЦИФРОВАЯ ИЕРАРХИЯ
Необходимость принятия единого стандарта для систем связи в Европе и Америке, а также потребность в повышении максимальной скорости передачи и встроенных средствах управления сетью связи привели к разработке синхронной цифровой иерархии SDH (к сожалению, североамериканский вариант этого стандарта под названием SONET несколько отличается от европейского, хотя эти различия не столь существенны, как в случае, например, иерархии каналов T-1, T-2... и E-1, E-2...).
В SDH синхронный транспортный модуль (STM-1) образует нижний уровень иерархии. Он эквивалентен синхронному транспортному сигналу STS-3c в иерархии SONET с емкостью 155,52 Мбит/с. Четыре модуля STM-1 мультиплексируются в STM-4 (=STS-12c) c емкостью 622,08 Мбит/с, а четыре модуля STM-4 - в STM-12 (=STS-48c) с емкостью 2,488 Гбит/с. Иерархия определяет и более высокие уровни.
Мультиплексирование осуществляется побайтно, а не побитно, т. е., например, когда четыре потока данных STM-1 объединяются в STM-4, мультиплексор сначала отправляет один байт из первого потока, затем один байт из второго и т. д. по кругу.
Одно из наиболее важных отличий синхронной от плезиохронной иерархии - это возможность выделения нужного канала вплоть до уровня E-1 без демультиплексирования всего транспортного сигнала. Это привело к появлению принципиально иного типа мультиплексоров - мультиплексоров с добавлением и выделением отдельных каналов (в английской терминологии - add-drop multiplexer, а в русской технической литературе их кратко называют мультиплексорами ввода/вывода).
Кроме того, многие мультиплексоры стали выполнять и функции кроссовой коммутации (впрочем, может быть и наоборот, но это уже спор о курице и яйце). Мультиплексоры с кроссовой коммутацией (cross-connect multiplexor) позволяют осуществлять концентрацию и разделение потоков (функции мультиплексирования и демультиплексирования) наряду с переключением цифровых сигналов с одного канала на другой в соответствии с определенными правилами (функции коммутации).
ИНВЕРСНОЕ МУЛЬТИПЛЕКСИРОВАНИЕ
В случае, когда организации необходимо иметь линию определенной пропускной способности, а предлагаемые емкости или слишком малы (например, Е-1), или слишком велики (скажем, E-3), тогда-то и пригодится устройство под названием инверсный мультиплексор. Данное устройство позволяет распределять входящий поток данных между несколькими исходящими линиями с меньшей емкостью, чем совокупный объем получаемых данных в единицу времени (см. Рисунок 4). Таким образом, например, заказчик может получить канал, эквивалентный по емкости двум E-1. Преимуществом такого подхода по сравнению с независимым подключением двух линий E-1 состоит, например, в том, что инверсный мультиплексор позволяет динамически распределять нагрузку между ними.
Рисунок 4.
Инверсное мультиплексирование заставляет вспомнить течение реки: огибая
острова, она разбивается на протоки, которые затем опять сливаются воедино.
ЗАКЛЮЧЕНИЕ
В данном уроке мы рассмотрели основные технологии мультиплексирования, применяемые в телефонных сетях. Телефония все теснее переплетается с миром компьютеров, во всяком случае, все чаще и чаще они используют одну и ту же транспортную сеть как в глобальных, так и локальных сетях, не говоря уже о том, что такая "горячая" технология ATM появилась, как один из вариантов широкополосной цифровой сети с интеграцией услуг. И, кстати говоря, ATM было бы правильнее назвать асинхронным временным мультиплексированием. Предшественник ATM, технология асинхронного временного разделения (Asynchronous Time Division, ATD), был разработан в лабораториях France Telecom как вариация TDM. Ее важнейшим отличием от TDM стало динамическое предоставление канала, а не на все время соединения (телефонного разговора); заголовок же позволял определить, к какому соединению принадлежат данные. Как следствие, доступная емкость использовалась более эффективно. Теперь наследник ATD претендует на роль единой технологии как глобальных, так и локальных сетей. Но это уже тема другого разговора.
Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: dganzha@msk.osp.su.