При обслуживании металлических кабельных линий наиболее часто пользуются измерительными мостами. Во-первых, они обеспечивают высокую точность в широком диапазоне измеряемых величин. Во-вторых, их применение позволяет организовать измерения таким образом, чтобы компенсировать посторонние влияния, что незаменимо для локализации неисправности. В-третьих, они недороги.
Учитывая сказанное, полезно ознакомиться не только с устройством измерительных мостов, но и с принципами их применения для локализации неисправностей. Впрочем, говоря языком математики, для построения оптимальных схем измерения такие знания необходимы, но недостаточны. Диагностика — это всегда и опыт, и искусство.
Принцип работы мостовой схемы измерения продемонстрировано на Рисунке 1 (RM1a), а способ ее применения на практике — на Рисунке 2 (RM2a). Сопротивление R1 вычисляется исходя из полученного при балансировке моста соотношения R4/R3, в качестве R2 используется резистор с известным значением. Конечно, сказанное дает только самое общее представление об измерительной схеме моста. На самом деле он устроен гораздо сложнее — современные мосты создаются на основе цифровых процессоров. Микропроцессорное ядро позволяет автоматизировать процедуру измерения (в первых моделях оператор должен был пользоваться калькулятором, сегодня же все расчеты выполняются аппаратурой), обеспечить многофункциональность устройства (многие мосты интегрированы с другими измерительными приборами — мультиметрами, рефлектометрами и т. п.), устранить помехи (посторонние постоянные и переменные напряжения почти всегда присутствуют на жилах кабелей), организовать дальнейшую обработку накопленных результатов измерений (хранение, обмен с компьютером, печать протоколов) и др.
Рассмотренный выше мост, используемый для измерения сопротивления, носит имя Уитстона (Wheatstone). Для подключения измеряемых цепей в нем применяются всего две клеммы (B и C). Более сложные схемы реализованы в двух других мостах — Муррея (Murray) и Купфмюллера (Kupfmuller) (RM2в). Здесь измеряемые цепи подключаются с помощью трех клемм (A, B и C). В более сложных схемах Хиборна/Графа (Hilborn/Graf) задействуются четыре клеммы (A, B, B? и C) (RM3). Смысл увеличения числа точек подключения станет понятен при рассмотрении схем измерения с применением мостов.
Еще один момент. Все упомянутые мостовые схемы используются для измерений при постоянном токе (определяются величины активных сопротивлений, подключенных к клеммам). Кроме того, мостовые схемы Уитстона и Муррея используются для измерений при переменном токе (определяются величины емкостей, подключенных к клеммам). В таких мостах источником напряжения служит генератор синусоидального напряжения.
Теперь остановимся на схемах измерений. С помощью моста Уитстона при постоянном токе измеряют сопротивление витой пары (шлейфа), сопротивление изоляции жил пары, сопротивление изоляции между жилами и экраном (RM3, RM4, RM5).
Значения упомянутых параметров используются для диагностики кабельных линий. Локализация же неисправностей требует определения места повреждения на кабельной линии. При помощи моста постоянного тока несложно вычислить расстояние до места повреждения. Зная сопротивление шлейфа Rшл и погонное сопротивление жил кабеля Rпог, можно воспользоваться формулой: Lпары = Rшл / 2Rпог, и рассчитать длину витой пары.
Погонное сопротивление медных жил определяется табличным способом по их сечению. Оно зависит не только от сечения жил, но и от их температуры. Чтобы избежать ошибки, нужно использовать значение погонного сопротивления для соответствующей температуры (особенно важно это для воздушных кабельных линий, где температура меняется в широких пределах). В простых мостах значения вводятся оператором вручную из таблиц. В более сложных приборах при помощи автоматической или полуавтоматической калибровочной процедуры определяется поправочный коэффициент по измеренному значению температуры (для чего в комплекте прибора присутствует щуп-датчик).
Длина витой пары может быть установлена также мостовым методом при переменном токе. В таком случае измеряемым параметром является емкость витой пары. Разделив емкость витой пары на ее погонную емкость, получим длину витой пары.
Аналогично рассмотренным выше измерениям при постоянном токе, с помощью моста Уитстона при переменном токе определяются емкость витой пары (шлейфа) и емкость каждой из жил пары относительно экрана. Длина жил может быть вычислена по их погонной емкости. Погонная емкость (нФ/км) витой пары зависит от сечения жил, типа скрутки, вида и материала изоляции и определяется табличным способом по типу кабеля.
Резкое увеличение емкости витой пары по сравнению с ее паспортным значением, как правило, свидетельствует о наличии воды в сердечнике кабеля. Для локализации повреждений этого типа применяются другие методы, прежде всего зондирование поврежденной пары с помощью рефлектометра.
Отметим, что, в отличие от сопротивления, погонная емкость слабо зависит от температуры, что существенно упрощает измерения.
Игорь Иванцов — менеджер отдела «Инструменты и приборы для монтажа и обслуживания телекоммуникационных систем» компании «СвязьКомплект». С ним можно связаться по тел. (095) 362-7787, по адресам: info@skomplekt.com, http://www.skomplekt.com.