Hadoop

Универсальная платформа обработки больших данных

На российском рынке остро ощущается потребность в платформах обработки больших данных, однако почти отсутствует локальная экспертиза. Появление дистрибутива Arenadata Hadoop, сертифицированного ODPi и собранного российскими разработчиками, призвано заполнить этот пробел.

Инструменты анализа графов

Программы поиска оптимальных маршрутов давно стали обыденностью, однако нахождение кратчайшего пути — не единственный практический результат теории графов. Сегодня имеется множество инструментов, позволяющих решать задачи графовой аналитики, каждый из которых эффективен в определенных ситуациях.

Машинное обучение для Больших Данных

Теоретические основы машинного обучения появились практически одновременно с первыми компьютерами, однако при его практическом применении всегда приходится учитывать специфику конкретных систем. Работа с Большими Данными средствами Hadoop требует инструментов адаптации алгоритмов машинного обучения к этой платформе, например с помощью механизмов из стека IBM BigInsights.

Мода и ИТ

После того как аналитики в середине 2015 года исключили Big Data из раздела прорывных технологий, говорить о Больших Данных стало немодно.

Обучение технологиям Больших Данных

При организации подготовки в университетах специалистов по технологиям Больших Данных наряду c проблемами методологического характера возникают и сложности с доступом к наборам данных и соответствующим инструментам. Наиболее эффективным в этой ситуации оказывается развертывание виртуальной среды Hadoop/Spark.

«Темные» данные

До наступления эпохи Больших Данных было относительно просто найти информацию, релевантную запросу, однако ситуация изменилась, когда организации перестали довольствоваться только своими внутренними базами и стали смотреть на сторону в поисках источников сведений, способствующих повышению конкурентоспособности.

Поиск, мониторинг и анализ в социальных сетях

Социальные сети — это ежедневно растущие петабайтные объемы неструктурированных данных, сбор, хранение и обработка которых традиционными средствами затруднительны. Технологии стека Hadoop позволяют решать эти задачи, однако реализация проектов не всегда оказывается безболезненной.

Анализ данных социальных сетей

Социальные сети могут стать источником дополнительных данных о клиентах, однако для его использования требуются специализированные инструменты. Открытые технологии из стека Hadoop позволяют строить платформы, способные в режиме массовой обработки извлекать ценную информацию для обогащения профилей клиентов.

Аналитика реального времени для ситуационного центра

Система управления кластером Hadoop YARN значительно повышает надежность и гибкость технологии MapReduce, позволяя в оперативной памяти проводить распределенную потоковую обработку данных, а значит, строить аналитические системы реального времени, используемые, например, в ситуационных центрах.

Анализ работы телекоммуникационной системы

Эффективность анализа данных о функционировании телекоммуникационного оборудования определяется возможностями системы сбора и обработки этих данных, объемы которых могут увеличиваться экспоненциально. Как выполнить глубокий анализ поведения сетевого оборудования в условиях лавинообразного роста показаний телеметрии?